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We construct effective 2- and 3-body Hamiltonians for the p-shell by performing 12h̄Ω ab initio
no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-
body Hamiltonians onto the 0h̄Ω space. We then separate these effective Hamiltonians into 0-,
1- and 2-body contributions (also 3-body for A=7) and analyze the systematic behavior of these
different parts as a function of the mass number A and size of the NCSM basis space. The role of
effective 3- and higher-body interactions for A > 6 is investigated and discussed.
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I. INTRODUCTION

Microscopic ab-initio many-body approaches have sig-
nificantly progressed in recent years [1–8]. Nowdays, due
to increased computing power and novel techniques, ab-
initio calculations are able to reproduce a large number of
observables for atomic nuclei with mass up to A=14. The
light nuclei have also served as a crucial site to recognize
the important role of three-body forces and three-body
correlations. Approaches like the No-Core Shell Model
(NCSM) [5], the Green’s Function Monte Carlo (GFMC)
[6] and the Coupled-cluster theory with single and dou-
ble excitations (CCSD) [8] can be formally extended for
heavier nuclei. However, the explosive growth in com-
putational power, required to achieve convergent results,
severely hinders the detailed ab-initio studies of heavier,
A≥ 16, nuclei. In the case of the NCSM, the slow conver-
gence of the calculated energies is caused by the adop-
tion of a two-body cluster approximation, which does
not take many-body correlations into account. Straight-
forward employment of the three-body and higher-body
interactions dramatically complicates the problem, even
for light nuclei.

An alternative approach is to construct a small-space
effective two-body interaction, which would account for
the many-body correlations for the A-body system in a
large space. Attempts to include many-body correlations
approximately modifying the one-body part of the ef-
fective two-body Hamiltonian and employing a unitary
transformation have been reported recently [9].

In this paper we derive a valence space (0h̄Ω) effec-
tive two-body interaction that accounts for all the core-
polarization effects available in the ab-initio NCSM wave-
functions.

First, in the framework of the NCSM, we construct the
effective Hamiltonians on the two-body cluster level for
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A=6 systems in the Nmaxh̄Ω space. Nmax represents the
limit on the total oscillator quanta (N) above the mini-
mum configuration. We take Nmax values from 2 to 12.
Second, following the original idea of Ref. [10], we em-
ploy an unitary many-body transformation and obtain
the effective two-body Hamiltonian in the 0h̄Ω space (p-
space), which exactly reproduces the lowest, 0h̄Ω space
dominated, eigenstates of the 6-body Hamiltonian in the
large Nmaxh̄Ω space. Third, we perform NCSM calcula-
tions for A=4 and A=5 systems with the effective Hamil-
tonian constructed on the two-body cluster level for the
A=6 system and determine the core and one-body parts
of the effective two-body Hamiltonian for A=6 in the
p-space. Finally, the procedure is generalized for arbi-
trary mass number A. We analyze the properties of the
constructed two-body Hamiltonians, investigate their ef-
ficiency to reproduce the observables of different A-body
systems calculated in large Nmaxh̄Ω spaces and study the
role of the effective p-space three-body interaction.

II. APPROACH

A. No Core Shell Model and effective interaction

The starting point of the No Core Shell Model (NCSM)
approach is the bare, exact A-body Hamiltonian con-
strained by the Harmonic Oscillator (HO) potential [5]:

HΩ
A =

A∑

j=1

hΩ
j +

A∑

j>i=1

Vij(Ω, A), (1)

where hΩ
j is the one-body HO Hamiltonian

hΩ
j =

p2
j

2m
+

1
2
mΩ2r2

j (2)

and Vij(Ω, A) is a bare NN interaction V NN
ij modified by

the term introducing A- and Ω-dependent corrections to
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offset the HO potential present in hΩ
j :

Vij(Ω, A) = V NN
ij − mΩ2

2A
(~ri − ~rj)2. (3)

The eigenvalue problem for the exact A-body Hamilto-
nian (1) for A > 3 is very complicated technically, since
an extremely large A-body HO basis is required to obtain
converged results. However, the A = 2 problem is consid-
erably simpler. For many realistic NN interactions its so-
lution in the relative HO basis with Nmax = 450 accounts
well for the short range correlations and is a precise ap-
proximation for the infinite space (Nmax → ∞) result.
This allows one to adopt the two-body cluster approxima-
tion to construct the NCSM effective two-body Hamilto-
nian HNmax,Ω

A,a=2 for an A-body system in an Nmaxh̄Ω space
of tractable dimension, where the lower index a stands
for the number of particles in the cluster. This approx-
imation consists of solving Eq.(1) for the a = 2 body
subsystem of A leading to

HΩ
A,a=2 = hΩ

1 + hΩ
2 + V12(Ω, A). (4)

The information about the total number of interacting
particles A enters the bare HΩ

A,a=2 Hamiltonian through
the second term in the right hand side of (3). Next,
we find the unitary transformation U2 which reduces the
bare HΩ

A,a=2 Hamiltonian in the “infinite space” (N∞
max =

450) to the diagonal form:

EΩ
A,2 = U2H

Ω
A,2U

†
2 , (5)

where, for the sake of simplicity, we omit the index A
for U2 and keep only the index a indicating the order of
cluster approximation. The matrix U2 can be split into
4 blocks:

U2 =
(

U2,P U2,PQ

U2,QP U2,Q

)
, (6)

where the square dP ×dP U2,P matrix corresponds to the
P-space (or model space) of dimension dP , characterized
by the chosen Nmax value.

Taking into account that the EΩ
A,2 matrix has a diago-

nal form

EΩ
A,2 =

(
EΩ

A,2,P 0
0 EΩ

A,2,Q

)
, (7)

one can calculate the effective HNmax,Ω
A,2 Hamiltonian us-

ing the following formula:

HNmax,Ω
A,2 =

U†
2,P√

U†
2,P U2,P

EΩ
A,2,P

U2,P√
U†

2,P U2,P

. (8)

It is easy to show by inserting Eq.(5) into the Eq.(8),
and taking into account Eq.(6) that the unitary transfor-
mation (8) is equivalent to the commonly used unitary

transformation [11, 12] and that Eq.(8) is identical to the
Eqs.(15,16) from [5]. We note,that, by using Eq.(8) one
does not need to calculate and store a large number of
matrix elements of the ω-operator (i.e., U†

2,P ω2 = U†
2,PQ).

Furthermore, the decoupling condition QHeffP = 0 is au-
tomatically satisfied, which is obvious from the diagonal
form of the EΩ

A,2 matrix. We note that our treatment of
center-of-mass motion remains the same as in the NCSM
(Ref. [5]). We initiate all effective interaction develop-
ments at the A-body level, and, through a series of steps,
arrive at a smaller space effective interaction appropriate
for the A-body system. For this reason, our derived ef-
fective Hamiltonians have their first subscript as “A”.

B. Projection of the many-body Hamiltonian

The next step of the traditional NCSM prescription is
to construct the full A-body Hamiltonian using the ef-
fective two-body Hamiltonian (8) and to diagonalize it
in the A-body Nmax model space. As we increase the
number of nucleons, the dimension of the corresponding
Nmax model space increases very rapidly. For instance,
up-to-date computing resources allow us to go as high as
Nmax = 16 for the lower part of the p-shell (A=5,6) [13],
while already for the upper part of the p-shell (A∼15), we
are limited to Nmax = 8. The computational eigenvalue
problem for many-body systems is complicated because
of the very large matrix dimensions involved. The largest
dimension of the model space that we encountered in this
study for 6Li with Nmax = 12 exceeds dP = 4.8 × 107.
To solve this problem we have used the specialized ver-
sion of the shell-model code ANTOINE [14, 15], recently
adapted for the NCSM [16].

In fact, the NCSM calculation for the A=6 system in
the Nmax = 12 space yields nearly converged energies
for the lowest states dominated by the N = 0 compo-
nents, while there is incomplete convergence for A ≥ 15
in Nmax = 8 space. Therefore, considering the Nmax = 12
NCSM results as exact solutions for the lowest N = 0
dominated 6-body states, we may construct the Nmax = 0
space Hamiltonian for the A=6 system, which exactly re-
produces those Nmax = 12 eigenvalues [10]. Moreover,
if it is possible to solve the 6-body problem for A=6,
then it is possible to solve the 6-body problem for arbi-
trary A, using the corresponding effective Hamiltonian
HNmax,Ω

A,2 obtained in the two-body cluster approxima-
tion. This means that we can determine for any A-body
system the effective Hamiltonian in the Nmax = 0 space,
which accounts for 6-body cluster dynamics in the large
Nmax = 12 space.

To generalize, we start by defining the procedure for
determining the effective Hamiltonian matrix elements
for the a1-body cluster in the A-nucleon system. We do
this by constructing the full a1-body Hamiltonian using
the effective 2-body Hamiltonian (8) and diagonalizing
it in the Nmax model space. In the spirit of Eq.(5), this
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yields the eigenenergies ENmax,Ω
A,a1

of the a1-body system
and their corresponding a1 eigenvectors which make up
the unitary transformation matrix UA,Nmax

a1,P . These a1-
body results can then be projected into a smaller, sec-
ondary P1-space, given by N1,maxh̄Ω with N1,max = 0,
where, similar to Eqs.(6) and (7), ENmax,Ω

A,a1
and UA,Nmax

a1,P
can be split into parts related to the two spaces, P1 and
Q1, where P1 + Q1 = P . The new secondary effective
Hamiltonian then takes the following general form:

HN1,max,Nmax
A,a1

=
UA,†

a1,P1√
UA,†

a1,P1
UA

a1,P1

ENmax,Ω
A,a1,P1

UA
a1,P1√

UA,†
a1,P1

UA
a1,P1

,

(9)
where the Ω superscript on the left-hand side is omit-
ted for the sake of simplicity. As stated earlier, the new
index a1 determines the order of the cluster approxima-
tion in the smaller P1 space, i.e., N1,max = 0. Because
the P1 space has N1,max = 0, the projection into this
space ”freezes” some number of the a1 nucleons into fixed
single particle configurations, which can be thought of
as the ”inert core” states in the Standard Shell Model
(SSM) approach. Consequently, it is possible to write a1

as a1 = Ac + av, where Ac is the number of nucleons
making up the core configuration, while av refers to the
size of valence cluster.

For instance, in the case of p-shell nuclei, Ac = 4,
so, if a1 = 5 (i.e. the 5-body cluster approximation),
then the effective Hamiltonian HN1,max=0,Nmax

A,a1=5 is simply
a one-body Hamiltonian (av = 1) appropriate for the
A-nucleon system. Similarly, for the 6-body cluster ap-
proximation, i.e., a1 = 6, we obtain the effective Hamil-
tonian HN1,max=0,Nmax

A,a1=6 , which is a two-body Hamiltonian
(av = 2) for the A-body system, and, so on for larger
values of a1. Whatever the value of av is, the effec-
tive Hamiltonian HN1,max=0,Nmax

A,a1
contains the informa-

tion about the a1-body dynamics in the original large
Nmaxh̄Ω space, since it reproduces exactly the lowest dP1

eigenvalues ENmax,Ω
A,a1,P1

of the a1-body Hamiltonian in the
Nmaxh̄Ω space, where dP1 is a dimension of the P1 space.

In the case of a doubly magic closed shell with two
extra nucleons i.e., A = 6, 18, 42, etc., the dimension of
the effective Hamiltonian H0,Nmax

A,a1=A is a 2-body (av = 2)
Hamiltonian in the p-, sd-, pf-spaces, etc., respectively.
This means that the secondary effective Hamiltonian (9)
contains only 1-body and 2-body terms, even after the ex-
act A-body cluster transformation. This effective Hamil-
tonian (9), which now contains the correlation energy of
all A nucleons, is the correct one-body plus two-body
Hamiltonian to use in a SSM calculation with inert core.
The Ac = A − 2 nucleon-spectators fully occupy the
shells below the valence shell and the total A-body wave-
function can be exactly factorized as the Ac-body ”core”
and the valence 2-body wave functions. This consider-
ably simplifies the calculation of the effective Hamilto-
nian, because only the 0h̄Ω part (P1-space part) of the
complete Nmaxh̄Ω wave function needs to be specified.

III. EFFECTIVE TWO-BODY P-SHELL
INTERACTION

Utilizing the approach outlined above, we have cal-
culated effective p-shell Hamiltonians for 6Li, using the
6-body Hamiltonians with Nmax = 2, 4, .., 12 and Ω = 14
MeV, constructed from the INOY (inside nonlocal out-
side Yukawa) interaction [18, 19]. This is a new type of
interaction, which has local behavior appropriate for tra-
ditional NN interactions at longer ranges, but exhibits a
nonlocality at shorter distances. The nonlocality of the
NN interaction has been introduced in order to account
effectively for three-nucleon (NNN) interactions which
correctly describe the NNN bound states 3H and 3He,
whereas still reproducing NN scattering data with high
precision. The corresponding excitation energies of p-
shell dominated states and the binding energy of 6Li are
shown in Fig.1 as a function of Nmax. The dimension of
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FIG. 1: The excitation energies of the Jπ states and ground
state energy for 6Li calculated in the Nmaxh̄Ω spaces with
the INOY interaction and h̄Ω = 14 MeV. The experimental
spectra and ground state energy are shown for comparison.

the configurational space for the Nmax = 12 case consid-
ered is 48 million (M-scheme). A two orders of magnitude
increase in the size of the model space, as compared to
the previous Nmax = 6 study [10], allows us to determine
a converged value of 31.681 MeV for the 6Li binding en-
ergy. Furthermore, the excitation energy of the highest
lying p-space state, Jπ = 0+

2 , is lowered by an amount
of 2.1 MeV in comparison to the Nmax = 6 case, indicat-
ing improved convergence for both the excited states and
ground state for Nmax = 12.

In the SSM an effective two-body Hamiltonian for a
nucleus with mass number A is represented in terms of
three components:

HA
SSM = H0 + H1 + V A

2 , (10)

where H0 is the inert core part associated with the inter-
action of the nucleons occupying closed shells, H1 is the
one-body part corresponding to the interaction of valence
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nucleons with core nucleons, and V A
2 is the two-body part

referring to the interaction between valence particles. It
is usually assumed that the core and one-body parts are
constant for an arbitrary number of valence particles and
that only the two-body part V A

2 may contain mass depen-
dence that includes effects of three-body and higher-body
interactions.

To represent the H0,Nmax
A,a1

Hamiltonian in the SSM for-
mat, we develop a valence cluster expansion (VCE),

H0,Nmax
A,a1

= HA,Ac

0 + HA,Ac+1
1 +

av∑

k=2

V A,Ac+k
k , (11)

where the lower index, k, stands for the k-body interac-
tion in the av-body valence cluster (a1 = Ac + av); the
first upper index A for the mass dependence; and the
second upper index, Ac + k for the number of particles
contributing to the corresponding k-body part. Thus, we
consider the more general case of allowing the core (k=0),
one-body (k=1) and other k-body parts to vary with the
mass number A. This appears necessary to include the
A-dependence of the excitations of the core (Ac) nucle-
ons treated in the original Nmax basis space. For the A=6
case the two-body valence cluster (2BVC) approximation
is exact:

H0,Nmax
A=6,a1=6 = H6,4

0 + H6,5
1 + V 6,6

2 , (12)

where the core part, H6,4
0 , is defined as the ground state

Jπ = 0+ energy of 4He calculated in the Nmaxh̄Ω space
with the TBMEs of the primary effective Hamiltonian,
HNmax,Ω

6,2 for A=6. Then the one-body part, H6,5
1 ,is de-

termined as

H6,5
1 = H0,Nmax

6,5 −H6,4
0 . (13)

The TBMEs of the one-body part, H6,5
1 ,

〈ab; JT |H6,5
1 |cd; JT 〉 = (εa + εb)δa,cδb,d (14)

may be represented in terms of single particle energies
(SPE) , εa:

εp
a = E(5Li, ja)− V 6,4

0 , εn
a = E(5He, ja)− V 6,4

0 . (15)

where the index a (as well as b,c, and d) denotes the
set of single particle HO quantum numbers (na, la, ja),
upper index stands for proton (p) and neutron (n), and
the E(5Li,J), E(5He,J) are NCSM energies of the low-
est Jπ

i = 3/2−1 and Jπ
i = 1/2−1 states calculated in the

Nmaxh̄Ω space for the 5-body system using the TBMEs
of the A = 6 effective Hamiltonian, HNmax,Ω

A=6,2 , which in-
cludes Coulomb energy. Finally, the two-body part V 6,4

2

is obtained by subtracting of two Hamiltonians:

V 6,6
2 = H0,Nmax

6,6 −H0,Nmax
6,5 . (16)

It is worth noting that since the Coulomb energy is in-
cluded in the original Hamiltonian, the proton-proton

(pp), neutron-neutron (nn) and proton-neutron (pn) T =
1 TBMEs of the two-body part, V 6,6

2 , have different val-
ues. The pn TBMEs of the core, one-body and two-
body parts of the expanded Hamiltonian for 6Li are
listed in the Table I. In Table I we also list the values
of HNmax=12,Ω=14

6,2 , so that one can observe how much
these values change when the correlations up to 6-bodies
are included, so as to obtain the values of H0,12

6,6 .
The results presented in Table I indicate that the

largest parts of the effective Hamiltonian are attributed
to the interaction among core nucleons (k=0) and the
interaction of valence nucleons with the core nucleons
(k=1). However, these two largest contributions par-
tially cancel each other. The pure two-body part cor-
responding to the interaction of valence nucleons is con-
siderably smaller than the individual core and one-body
parts. Note that one may re-partition the core and sin-
gle particle energies by shifting a constant amount from
HA,5

0 to HA,4
0 . A shift of ≈ 24 MeV (≈ 32 MeV) for

A=6 (7) produces core and valence energies where the
core matches the 4He as in the NCSM with A=4.

To investigate the balance of the pure two-body, V 6,6
2 ,

core, H6,4
0 , and one-body, H6,5

1 , parts of the effective
Hamiltonian with the increase of the size of the origi-
nal many-body space, we have plotted the sum of core
and one-body parts, H6,4

0 + H6,5
1 , as a function of Nmax

in Fig.2. The results in Fig.2 reveal a weak dependence
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FIG. 2: The diagonal TBMEs of the sum for the core and one-
body parts, 〈ab|H6,4

0 +H6,5
1 |ab〉, for the effective Hamiltonian,

H0,Nmax
6,6 , for 6Li as a function of Nmax.

of the sum of the core and one-body parts of the effec-
tive Hamiltonian on Nmax starting at Nmax = 6. This
means that the converged results for core plus one-body
parts of the effective Hamiltonian are closely approached.
The gaps in the curves are governed by the size of the
spin-orbit splitting ε1 − ε3.

Plotting the diagonal pn TBMEs of the residual two-
body part, V 6,6

2 , of the effective Hamiltonian in Fig.3, we
observe, that they exhibit stronger dependence than the
core plus one-body parts with increase of Nmax. From
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TABLE I: The pn TBMEs of the NCSM HNmax=12,Ω=14
6,2 Hamiltonian, the the p-shell effective Hamiltonians H0,Nmax

6,6 and

H0,Nmax
7,6 obtained from an Nmax = 12 NCSM calculation for 6Li are shown. The core, HA,4

0 , one-body, HA,5
1 , and residual

two-body,V A,6
2 parts for both Hamiltonians are presented. The H0,Nmax

7,6 Hamiltonian with A-independent core and one-body
parts is shown in last three columns.

H12,14
6,2 H0,12

A,6 , (MeV) H0,12
6,6 , (MeV) H0,12

7,6 , (MeV) H0,12
7,6 , (MeV)

2ja 2jb 2jc 2jd J T A=6 A=6 A=7 H6,4
0 H6,5

1 V 6,6
2 H7,4

0 H7,5
1 V 7,6

2 H4,4
0 H5,5

1 W 7,6
2

1 1 1 1 0 1 -6.369 -20.528 -31.866 -54.830 36.762 -1.626 -63.336 33.614 -1.241 -30.500 11.014 -11.638

1 1 3 3 0 1 -3.818 -2.823 -3.104 -2.823 -3.104 -3.104

3 3 3 3 0 1 -9.069 -27.147 -41.661 -54.830 28.997 -0.161 -63.336 22.555 0.401 -30.500 6.535 -16.728

1 1 1 1 1 0 -7.526 -22.822 -35.152 -54.830 36.762 -3.921 -63.336 33.614 -4.526 -30.500 11.014 -14.923

1 1 1 3 1 0 -1.264 -0.645 -1.025 -0.645 -1.025 -1.025

1 1 3 3 1 0 1.724 2.012 2.107 2.012 2.107 2.107

1 3 1 3 1 0 -11.183 -27.828 -41.079 -54.830 32.879 -4.884 -63.336 28.085 -4.735 -30.500 8.774 -18.498

1 3 3 3 1 0 -4.037 -4.211 -4.977 -4.211 -4.977 -4.977

3 3 3 3 1 0 -7.180 -26.884 -41.615 -54.830 28.997 0.102 -63.336 22.555 0.448 -30.500 6.535 -16.681

1 3 1 3 1 1 -6.239 -21.419 -33.875 -54.830 32.879 1.524 -63.336 28.085 2.469 -30.500 8.774 -11.294

1 3 1 3 2 0 -10.847 -26.844 -40.884 -54.830 32.879 -3.900 -63.336 28.085 -4.540 -30.500 8.774 -18.303

1 3 1 3 2 1 -8.292 -22.951 -35.742 -54.830 32.879 -0.007 -63.336 28.085 0.602 -30.500 8.774 -13.161

1 3 3 3 2 1 1.594 1.395 1.787 1.395 1.787 1.787

3 3 3 3 2 1 -7.165 -24.892 -39.188 -54.830 28.997 2.094 -63.336 22.555 2.875 -30.500 6.535 -14.245

3 3 3 3 3 0 -9.730 -29.167 -44.520 -54.830 28.997 -2.181 -63.336 22.555 -2.457 -30.500 6.535 -19.586
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FIG. 3: The diagonal pn TBMEs of the two-body part,
〈ab; JT |V 6,6

2 |ab; JT 〉, of the effective Hamiltonian, H0,Nmax
6,6 ,

as a function of Nmax.

Fig.3 we observe that the T=0 TBMEs are, on average,
attractive, while the T=1 TBMEs are repulsive. Starting
at Nmax=6 the two-body part shows smooth regularity.
The results for nondiagonal matrix elements, shown in
Fig. 4, indicates smooth, regular changes towards smaller
absolute values of these TBMEs. We note that slow con-
vergence of TBMEs with increasing Nmax reminds us of
earlier treatment of core polarization [20, 21], where we
observe slow convergence with ”improved” treatments of

core-polarization within perturbation theory.
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1333 21

FIG. 4: The non-diagonal pn TBMEs of the two-body part,
〈ab; JT |V 6,6

2 |cd; JT 〉, for the effective Hamiltonian, H0,Nmax
6,6 ,

as a function of Nmax.

A. Two-body valence cluster approximation for
A > 6

The VCE given by the Eq.(11) would require a three-
body part V7,7

3 of the p-shell effective interactionH0,Nmax
7,7

to reproduce exactly the NCSM results for A=7 nuclei:

H0,Nmax
A=7,a1=7 = H7,4

0 + H7,5
1 + V 7,6

2 + V 7,7
3 . (17)
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Therefore, it is worth knowing how good the 2BVC ap-
proximation for A=7 as well as for A > 7 is. To
test the 2BVC approximation, we have constructed the
H0,Nmax

A=7,a1=6 Hamiltonian, using Eq.(9), and expanded it in
terms of zero-, one- and two-body valence clusters, i.e.
omitting the three-body part:

H0,Nmax
A=7,a1=6 = H7,4

0 + H7,5
1 + V 7,6

2 . (18)

In other words, we have first performed NCSM calcu-
lations for the a1-body systems (a1 = 4, 5, 6) with the
HNmax,Ω

A=7,2 Hamiltonian. Thus, H7,a1=4
0 is the 4He “core”

energy and H7,a1=5
1 is the one-body part determined as

in Eqs.(13)-(15), but with A=7; and V 7,a1=6
2 is obtained

by subtracting H7,4
0 + H7,5

1 from H0,Nmax
A=7,a1=6.

The resulting parts of the H0,Nmax
A=7,6 Hamiltonian are

given in Table I. Comparing the TBMEs for A=6 and
A=7 (Table I), we find that they differ considerably.
There is a big change separately for the core and one-
body parts, but weaker changes for the two-body parts,
which tend to become larger in magnitude with increas-
ing A. We have then performed SSM calculations for the
ground state energy of 7Li, using the zero-, one- and two-
body parts in Eq.(18). Namely, the one- and two-body
parts were employed in a SSM calculation of the ground
and excited states energies of the valence nucleons in the
p-shell, i.e., 0h̄Ω space, to which the 4He core energy,
H7,4

0 , was added, in order to yield the total energies.
These calculations were repeated for Nmax = 0, 2, ...10.
Next we carried out NCSM calculations for 7Li with
HNmax,Ω

A=7,2 for the same values of Nmax. The SSM and
NCSM results for the ground-state energy are shown in
Fig.5.

2 4 6 8 10 12
Nmax

-50

-48

-46

-44

-42

-40

-38

-36

-34

-32

-30

E
g
s
H
M
e
V
L

ExpExp

7Li INOY hW=14 MeV

FIG. 5: The ground state energy, Egs, of 7Li as a function of

Nmax. The NCSM results with the HNmax,Ω
A=7,2 Hamiltonian are

shown by filled circles connected with the solid line. The SSM
results with the effective H0,Nmax

7,6 Hamiltonian decomposed
according to Eq.(18) are shown by squares connected with

the dashed line. The SSM results with the effective H0,Nmax
7,6

Hamiltonian decomposed according to Eq.(19) are shown by
filled circles connected with a dashed line.

It is also of interest to find out what would be the
result if we take the fixed core and one-body parts at
values which are appropriate for the a1 = 4 and a1 = 5
systems, respectively, because this is analogous to what
is done in the SSM to determine energies relative to an
inert core. To do this we adopt an alternative two-body
VCE, which assumes that the core and one-body parts
are A independent, i.e.,

H0,Nmax
A,6 = H4,4

0 + H5,5
1 + WA,6

2 , (19)

similar to the SSM convention given by Eq.(10). We have
then performed another set of SSM calculations for A=7
in the same manner as described previously, but using the
decomposition given in Eq.(19). To distinguish between
the two-body part of the VCE given by the Eqs.(11)
and (19), we have introduced the new notation, WA,6

2 ,
in Eq.(19). The Hamiltonian H0,12

7,6 expanded according
to the Eq.(19) is shown in last three columns of Table
I and the corresponding results are depicted in Fig.5 by
the dots connected with a dashed line. Figure 5 indi-
cates that for light systems a realistic balance of core,
one-body and two-body parts of the effective interaction
may be achieved only when both the core and one-body
parts are mass-dependent, contrary to earlier approaches.
A-independent core and one-body parts lead to a very
strong two-body part for the valence nucleons and, sub-
sequently, to drastic overbinding. It is obvious, that, in
order to compensate for such an effect one would need
to introduce a strongly repulsive three-body effective in-
teraction with an unrealistic strength of about 10 MeV.
Although, the effect on the spectrum is smaller, the VCE
with the A-dependent core and one-body parts also yields
better agreement with the exact NCSM results for the
excited states. The corresponding low-energy spectrum
of 7Li obtained with the NCSM and the A-dependent
SSM (using the values in columns 12,13 and 14 of Ta-
ble I) are compared in Fig.6. The differences observed in

2 4 6 8 10 12
Nmax
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7
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E
x
H
M
e
V
L

7Li INOY hW=14 MeV
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5-

3-
1-
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5-

3-
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3-
1-

7-

5-

FIG. 6: NCSM (solid line) and SSM (using Eq.(18), dashed
line) spectra for 7Li. The states with spin J are marked by
2J.

Figs.5 and 6 for the ground state and excited states, re-
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spectively, may be attributed to the neglected three-body
part of the effective interaction at the two-body valence
cluster level.

We have generalized the 2BVC expansion procedure of
Eq.(18) for arbitrary mass number A,

H0,Nmax
A,a1=6 = HA,4

0 + HA,5
1 + V A,6

2 , (20)

and applied it to the A=7,8,9, and 10 isobars for Nmax =
6. The difference of the NCSM and SSM ground state en-
ergies for different mass number A is plotted as a function
of isospin projection Tz = (N − Z)/2 in Fig.7. Figure 7

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
2TZ=N-Z

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

D
E
H
M
e
V
L

A=7

A=8

A=9

DE =ENCSM-ESSM

A=10

FIG. 7: The difference of the NCSM and SSM (Eq.(20)
ground state energies for different values of mass number A
as a function of isospin projection Tz = (N − Z)/2.

shows that the three-body and higher-body correlations
become more important with increasing mass number.
There is also a very strong isospin dependence of the ob-
tained results. For the highest isospin values the SSM
systematically underbinds nuclei in comparison to the
NCSM. However, there is an opposite effect in the vicin-
ity of the N = Z line where SSM yields considerably
more binding energy than the NCSM.

Thus, the residual a1-body correlations with a1 ≥ 3
in the p-shell play an important role for A ≥ 7 nuclei in
terms of total binding energy.

B. Beyond the two-body valence cluster expansion

The analysis of the A=7 systems may allow us to de-
rive an effective three-body Hamiltonian for the p-shell
and to give an idea about the strength of the three-body
interaction. To derive the three-body effective Hamilto-
nian, we employ the three-body valence cluster expansion
(3BVC) approximation,

H0,Nmax
A,a1=7 = HA,4

0 + HA,5
1 + V A,6

2 + V A,7
3 , (21)

which is the exact one for A = 7 systems. Comparing
Eqs.(18) and (21), we find the the following result for

the three-body part V A,7
3 of the effective Hamiltonian:

V A,7
3 = H0,Nmax

A,7 −H0,Nmax
A,6 . (22)

Using Eq.(9), we derive the A=7 Hamiltonian, H0,Nmax
7,7 ,

employing a1 = 7 NCSM eigenvectors and eigenvalues,
obtained with the HNmax,Ω

7,2 interaction. The same pro-
cedure is then repeated to calculate the A=7 Hamilto-
nian, H0,Nmax

7,6 , employing a1 = 6 NCSM eigenvectors
and eigenvalues, obtained with the HNmax,Ω

6,2 interaction.
Then, the residual three-body part V 7,7

3 is calculated ac-
cording to Eq.(22). The same scheme can be applied for
A > 7 systems taking appropriate values of A in Eq.(22).

As an example, the T=3/2 matrix elements of the re-
sulting three-body effective p-shell Hamiltonian for A=7
and Nmax = 6 are given in Table II. On average, the
nnn T = 3/2 Three-Body Matrix Elements (3BMEs) are
attractive. They are approximately an order of magni-
tude smaller in absolute value than the related T = 1
TBMEs for A=7 (see Table I) and have an opposite sign.
Performing the same procedure, we have obtained the
3BMEs for the A=8, 9 and 10 systems, which are also
listed in Table II. Comparing nnn 3BMEs for different
A, we note that there are only small differences; however
their magnitudes become smaller for larger mass, which
is in contrast to what we observed in the previous section
for the two-body effective interaction.

Using obtained neutron 2BMEs and 3BMEs we have
performed SSM calculations for 8He, 9He and 10He,
which have no valence protons and 4, 5 and 6 valence
neutrons, respectively, in the p-shell. As an example, the
results of the SSM calculations for 8He, 9He and 10He
with effective interactions obtained in 2BVC and 3BVC
approximations are compared to exact NCSM results in
Table III and Fig. 8.

Obtained results indicate that the 3BVC approxima-
tion improves the agreement with the exact NCSM for
the |Tz| = 3/2, 2 cases, i.e., for the systems where only
the T=3/2 three-body coupling is possible. There is also
considerable improvement for the excitation energies of
the 8He, that is shown in Fig.8. However, to draw quan-
titative conclusion about the 4-body and higher-body ef-
fective interactions with T=2,5/2 and 3 for identical nu-
cleons one needs to perform exact diagonalization using
3BMEs. Figure 7 indicates also that there is a strong,
and, on average repulsive 3-body effective interaction in
the T=1/2 channel, when one has both valence protons
and neutrons. We will evaluate this effect in future stud-
ies.

IV. CONCLUSION

Within the NCSM approach we can calculate, by ex-
act projection, full A-nucleon dependent TBMEs (and
3BMEs). These A-dependent TBMEs (and 3BMEs) can
be separated into core, one-body and two-body (and
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TABLE II: The 3-body T=3/2 parts of the p-shell effective Hamiltonian, H0,Nmax
7,7 , obtained from an Nmax = 6 NCSM calculation

for A=7 isobars, 7He, 7Li, 7Be and 7B, are shown in column 9, 10, 11 and 12, respectively. The 3-body nnn parts of the p-shell
effective Hamiltonians, H0,Nmax

A,7 , for A=8, 9 and 10 are shown in columns 13,14 and 15, respectively. The notation n(np) is
used for the isospin projected combination of nnp and npn states.

V 3
A,7, (MeV)

2ja 2jb 2jc 2jd 2je 2jf 2J 2T A = 7 A = 8 A = 9 A = 10

nnn nnn nnn nnn

3 3 1 3 3 1 1 3 -0.055 0.181 0.354 0.471

3 3 3 3 3 3 3 3 -0.366 -0.181 -0.080 -0.026

3 3 1 3 3 1 3 3 -0.504 -0.280 -0.126 -0.030

3 1 1 3 1 1 3 3 -0.306 -0.081 -0.053 0.010

3 3 3 3 3 1 3 3 0.290 0.281 0.270 0.261

3 3 3 3 1 1 3 3 -0.246 -0.202 -0.165 -0.135

3 3 1 3 1 1 3 3 0.388 0.356 0.317 0.283

3 3 1 3 3 1 5 3 -0.209 -0.038 0.066 0.14

TABLE III: Results for 8He, 9He and 10He from SSM calcu-
lations with the effective 2BVC and 3BVC Hamiltonians and
from exact NCSM calculation for Nmax = 6.

Jπ
i E(8He), (MeV) Jπ

i E(9He), (MeV)

2BVC 3BVC NCSM 2BVC 3BVC NCSM

0+
1 -26.323 -26.542 -26.604 1/2−1 -22.328 -22.342 -22.835

2+
1 -21.608 -21.609 -21.752 3/2−1 -17.429 -17.452 -17.961

1+
1 -18.555 -19.224 -19.386 E(10He), (MeV)

0+
2 -16.108 -16.644 -16.843 0+ -21.219 -19.720 -21.086

2+
2 -14.736 -15.681 -15.682

-22

-20

-18

-16

-14

-12

E
H
M
e
V
L

2BVC

3BVC NCSM

8He 9He

2+

1+

0+

2+

1�2-

3�2-

0+

10He

FIG. 8: Comparison of spectra for 8He, 9He and 10He from
SSM calculations using the effective 2BVC and 3BVC Hamil-
tonians and from exact NCSM calculation for Nmax = 6.

three-body) parts, all of which are also A-dependent, con-
trary to the SSM approach. When these A-dependent
effective one- and two-body (and three-body) interac-
tions are employed in SSM calculations, they yield results
in excellent agreement with full NCSM calculations per-
formed in large basis spaces. Our results for A > 7, which
include the 3-body effective interaction, indicate that 4-
and higher-body effective interactions play a negligible
role in determining their binding energies and spectra.
Future investigations will be extended to include other
physical operators, such as transition operators and EM
moments.
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